首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7204篇
  免费   1360篇
  国内免费   1186篇
化学   5918篇
晶体学   80篇
力学   383篇
综合类   83篇
数学   782篇
物理学   2504篇
  2024年   6篇
  2023年   152篇
  2022年   212篇
  2021年   272篇
  2020年   361篇
  2019年   408篇
  2018年   302篇
  2017年   283篇
  2016年   396篇
  2015年   408篇
  2014年   456篇
  2013年   577篇
  2012年   703篇
  2011年   673篇
  2010年   416篇
  2009年   428篇
  2008年   460篇
  2007年   369篇
  2006年   363篇
  2005年   321篇
  2004年   277篇
  2003年   244篇
  2002年   325篇
  2001年   267篇
  2000年   160篇
  1999年   143篇
  1998年   124篇
  1997年   72篇
  1996年   78篇
  1995年   61篇
  1994年   62篇
  1993年   50篇
  1992年   77篇
  1991年   49篇
  1990年   50篇
  1989年   30篇
  1988年   22篇
  1987年   23篇
  1986年   23篇
  1985年   12篇
  1984年   8篇
  1983年   11篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1971年   1篇
  1959年   2篇
  1957年   2篇
  1936年   3篇
排序方式: 共有9750条查询结果,搜索用时 31 毫秒
51.
李欣  赵强  郝建红  董志伟  薛碧曦 《强激光与粒子束》2020,32(2):025024-1-025024-6
作为航天器电源系统的重要组成部分,太阳电池需要更高的转换效率和可靠性以及更长的使用寿命。通过在太阳电池表面覆盖抗辐照玻璃盖片,可以增强太阳电池对粒子辐射的防护,延长太阳电池的服役寿命,使航天器获得可靠的能源供应。硼硅酸盐玻璃就是一种理想的太阳电池玻璃盖片材料。采用蒙特卡罗方法,结合SRIM软件模拟研究质子辐照硼硅酸盐玻璃的损伤物理机理。基于粒子与物质相互作用的理论以及基本公式,通过分析不同入射能量的质子在硼硅酸盐玻璃中的阻止本领、电离能损、位移能损、空位的产生情况,对辐照损伤的物理机制进行研究。结果表明:能量为30~120 keV的质子辐照损伤主要发生在硼硅酸盐玻璃表面;质子沉积、空位分布等均为Bragg峰型分布;电离能损是能量损失的主要部分,随入射能量的增加而增大,导致电子的电离和激发;位移能损在玻璃内部随能量降低而增大,导致硼、氧和硅等空位缺陷的产生;电离效应和缺陷的产生是硼硅酸盐玻璃色心形成的重要原因。  相似文献   
52.
Chen  Yujie  Sang  Weixuan  Chen  Rong  Liu  Xue  Li  Xiaoyan  Guan  Fenfen  Li  Xun  Xiao  Hui 《Journal of Radioanalytical and Nuclear Chemistry》2020,324(1):367-373
Journal of Radioanalytical and Nuclear Chemistry - The nanoscale zero-valent nickel (nano-Ni0) was prepared by liquid-phase reduction method and characterized by BET, XPS, FT-IR and XRD and be used...  相似文献   
53.
In view of the clean and sustainable energy, metal–organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF-based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal–air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF-based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF-based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF-based ORR electrocatalysts are also discussed.  相似文献   
54.
In the present work, a visible-light-driven Ag/AgBr/ZnFe2O4 photocatalyst has been successfully synthesized via a deposition–precipitation and photoreduction method. The crystal structure, chemical composition, morphology and optical properties of the as-prepared nanocomposites were characterized by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscope, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activities of the Ag/AgBr/ZnFe2O4 nanocomposites were evaluated through the photodegradation of gaseous toluene and methyl orange (MO) under visible light. The results revealed that the as-prepared Ag/AgBr/ZnFe2O4 nanocomposite exhibited excellent photocatalytic activity. The degrading efficiency of MO could still reach 90% after four cycles, and the Ag/AgBr/ZnFe2O4 nanocomposite could be recycled easily by a magnet. Additionally, the enhanced photocatalytic mechanism was discussed according to the trapping experiments, which indicated that the photo-generated holes (h+) and •O2 played important roles in photodegradation process. At last, a possible photocatalytic oxidation pathways of toluene was proposed based on the results of GC–MS. The Ag/AgBr/ZnFe2O4 composites showed potential application for efficient removal of organic pollutant.  相似文献   
55.
Electrocatalysis is the most promising strategy to generate clean energy H2, and the development of catalysts with excellent hydrogen evolution reaction (HER) performance at high current density that can resist strong alkaline and acidic electrolyte environment is of great significance for practical industrial application. Therefore, a P doped MoS2@Ni3S2 nanorods array (named P-NiMoS) was successfully synthesized through successive sulfuration and phosphorization. P-NiMoS presents a core/shell structure with a heterojunction between MoS2 (shell) and Ni3S2 (core). Furthermore, the doping of P modulates the electronic structure of the P-NiMoS; the electrons transfer from the t2g orbital of Ni element to the eg empty orbital of Mo element through the Ni−S−Mo bond at the Ni3S2 and MoS2 heterojunction, facilitating the hydrogen evolution reaction. As a result, P-NiMoS exhibits excellent HER activity; the overpotential is 290 mV at high current density of 250 mA cm−2 in alkaline electrolyte, which is close to Pt/C (282 mV@250 mA cm−2), and P-NiMoS can stably evolve hydrogen for 48 h.  相似文献   
56.
Juglandis Mandshuricae Cortex is the bark of Juglans mandshurica Maxim., which has been used as a folk medicine plant in China and India. In this study, an ultra-high performance liquid chromatography–quadrupole/orbitrap high-resolution mass spectrometry method was developed to clarify and quantify the chemical profiling of Juglandis Mandshuricae Cortex rapidly. A total of 113 compounds were characterized. Among them, seven flavonoids were simultaneously quantified in 15 min, including myricetin, myricetrin, taxifolin, kaempferol, quercetin, quercitrin, and naringenin. The method was validated for accuracy, precision, and the limits of detection and quantification. All calibration curves showed a good linear relationship (r > 0.9990) within test ranges. The intra- and inter-day relative standard deviations were less than 2.16%. Accuracy validation showed that the recovery was between 95.6 and 101.3% with relative standard deviation values below 2.85%. The validated method was successfully applied to determine the contents of seven flavones in Juglandis Mandshuricae Cortex from seven sources and the contents of these places were calculated respectively. This method provides a theoretical basis for further developing the medicinal value of Juglandis Mandshuricae Cortex.  相似文献   
57.
Vaccinium dunalianum Wight, usually processed as a traditional folk tea beverage, is widely distributed in the southwest of China. The present study aimed to investigate the antioxidant, α-glucosidase and pancreatic lipase inhibitory activities of V. dunalianum extract and isolate the bioactive components. In this study, the crude extract (CE) from the buds of V. dunalianum was prepared by the ultrasound-assisted extraction method in 70% methanol and then purified with macroporous resin D101 to obtain the purified extract (PM). Five fractions (Fr. A–E) were further obtained by MPLC column (RP-C18). Bioactivity assays revealed that Fr. B with 40% methanol and Fr. D with 80% methanol had better antioxidant with 0.48 ± 0.03 and 0.62 ± 0.01 nM Trolox equivalent (TE)/mg extract for DPPH, 0.87 ± 0.02 and 1.58 ± 0.02 nM TE/mg extract for FRAP, 14.42 ± 0.41 and 19.25 ± 0.23 nM TE/mg extract for ABTS, and enzyme inhibitory effects with IC50 values of 95.21 ± 2.21 and 74.55 ± 3.85 for α-glucosidase, and 142.53 ± 11.45 and 128.76 ± 13.85 µg/mL for pancreatic lipase. Multivariate analysis indicated that the TPC and TFC were positively related to the antioxidant activities. Further phytochemical purification led to the isolation of ten compounds (1–10). 6-O-Caffeoylarbutin (7) showed significant inhibitory effects on α-glucosidase and pancreatic lipase enzymes with values of 38.38 ± 1.84 and 97.56 ± 7.53 µg/mL, and had the highest antioxidant capacity compared to the other compounds.  相似文献   
58.
Mr. Chen Qian, Dr. Zhimin Ma, Mr. Jianwei Liu, Mrs. Xue Zhang, Prof. Shitao Wang and Prof. Zhiyong Ma. In this article, we report a newly designed molecule composed of a dihydroazulene (DHA) group and a phenothiazine (PTZ) moiety, which achieves aggregation-induced emission enhancement (AIEE), mechanochromism and “gated” solid-state photochromism upon stimulation by an external force. Grinding loosens intermolecular interactions in the crystal and causes a red-shift of fluorescence from 570 nm to 600 nm. Meanwhile, the ring-opening reaction of DHA unit is activated by grinding and a remarkable photochromism could be observed from the grinded powder. The reddish emission of the grinded powder peaked at 600 nm weakened gradually and finally became dark, and a new absorption band at 470 nm emerged in the absorption spectra. Time-dependent density functional theory (TD-DFT) calculation results reveal that the intramolecular intramolecular charge-transfer (ICT) process is replaced by a locally excited (LE) emission on the DHA group, which leads to the quenching of fluorescence. Its impressive photochromic property inspired us to a simple but effective way to develop an encryption system which can let the correct information be displayed upon external stimulation.  相似文献   
59.
Abnormally increased resorption contributes to bone degenerative diseases such as Paget’s disease of bone (PDB) through unclear mechanisms. Recently, the optineurin (OPTN) gene has been implicated in PDB, and global OPTN knockout mice (Optn−/−) were shown to exhibit increased formation of osteoclasts (osteoclastogenesis). Growing evidence, including our own, has demonstrated that intracellular reactive oxygen species (ROS) stimulated by receptor activator of nuclear factor kappa-B ligand (RANKL) can act as signaling molecules to promote osteoclastogenesis. Here, we report that OPTN interacts with nuclear factor erythroid-derived factor 2-related factor 2 (NRF2), the master regulator of the antioxidant response, defining a pathway through which RANKL-induced ROS could be regulated for osteoclastogenesis. In this study, monocytes from Optn−/− and wild-type (Optn+/+) mice were utilized to differentiate into osteoclasts, and both qRT-PCR and tartrate-resistant acid phosphatase (TRAP) staining showed that the Optn−/− monocytes exhibited enhanced osteoclastogenesis compared to the Optn+/+ cells. CellROX® staining, qRT-PCR, and Western blotting indicated that OPTN deficiency reduced the basal expression of Nrf2, inhibited the expression of NRF2-responsive antioxidants, and increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclastogenesis. Coimmunoprecipitation (co-IP) showed direct interaction, and immunofluorescence staining showed perinuclear colocalization of the OPTN-NRF2 granular structures during differentiation. Finally, curcumin and the other NRF2 activators attenuated the hyperactive osteoclastogenesis induced by OPTN deficiency. Collectively, our findings reveal a novel OPTN-mediated mechanism for regulating the NRF2-mediated antioxidant response in osteoclasts and extend the therapeutic potential of OPTN in the aging process resulting from ROS-triggered oxidative stress, which is associated with PDB and many other degenerative diseases.Subject terms: Mechanisms of disease, Stress signalling  相似文献   
60.
Li  Si Cong  Jin  Yu Jian  Xue  Xin  Xu  Guang Hua 《Chemistry of Natural Compounds》2022,58(1):138-140
Chemistry of Natural Compounds -  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号